FINITE MEAN OSCILLATION AND THE BELTRAMI EQUATION

BY

VLADIMIR RYAZANOV

Institute of Applied Mathematics and Mechanics, NAS of Ukraine ul. Roza Luxemburg 74, 83114, Donetsk, Ukraine e-mail: ryaz@iamm.ac.donetsk.ua, ryazanov@www.math.helsinki.fi

AND

URI SREBRO

Department of Mathematics, Technion — Israel Institute of Technology

Haifa 32000, Israel

e-mail: srebro@math.technion.ac.il

AND

EDUARD YAKUBOV

Holon Academic Institute of Technology 52 Golomb St., P.O.Box 305, Holon 58102, Israel e-mail: yakubov@hait.ac.il

ABSTRACT

We prove the existence and uniqueness of homeomorphic ACL solutions to the Beltrami equation in the case when the dilatation coefficient of the equation has a majorant of finite mean oscillation.

1. Introduction

Let D be a domain in \mathbb{C} and $\mu: D \to \mathbb{C}$ a measurable function with $|\mu(z)| < 1$ a.e. in D. The **Beltrami equation** associated with μ has the form

$$(1.1) f_{\overline{z}} = \mu(z) \cdot f_z,$$

Received March 18, 2004 and in revised form March 9, 2005

where $f_{\overline{z}}$ and f_z are the complex partial derivatives of f. The function μ is the complex coefficient of the equation and

(1.2)
$$K(z) = K_{\mu}(z) := \frac{1 + |\mu(z)|}{1 - |\mu(z)|}$$

is the **dilatation** of the equation. By a **solution** we mean an **ACL solution**, a.e. a continuous mapping $f: D \to \mathbb{C}$ which is ACL, i.e. absolutely continuous on lines, cf. [LV], whose partial derivatives, which exist a.e., satisfy (1.1) a.e. If f is a solution, then μ is the **complex dilatation** of f and K(z) is the **dilatation** of f; see [LV]. If $f: D \to \mathbb{C}$ is an ACL homeomorphic solution and $K(z) \leq Q(z)$ a.e. in D, we say that f is a Q(z)-quasiconformal in D.

By the classical existence and uniqueness theorem (see, for instance, [LV] or [Ah]), if $||\mu||_{\infty} < 1$ or equivalently if $K_{\mu} \in L^{\infty}(D)$, then (1.1) has a homeomorphic solution which is unique up to a post composition by a conformal mapping.

Much research has been devoted to the extension of the classical existence and uniqueness theorem to the degenerate case when $||\mu||_{\infty}=1$; see, for instance, the monograph [IM] by Iwaniec and Martin and the exposition [SY] by Srebro and Yakubov. In one of the outstanding papers in this direction, David [Da] showed that if $\mu \colon \mathbb{C} \to \mathbb{C}$ is measurable, $|\mu| < 1$ a.e. and satisfies the exponential measure constraint

$$(1.3) |\{z \in \mathbb{C}: |\mu(z)| > 1 - \varepsilon\}| < Ce^{-d/\varepsilon}$$

for all $\varepsilon \in (0, \varepsilon_0]$ for some $\varepsilon_0 > 0, C > 0$ and d > 0, then (1.1) has a unique solution f which maps \mathbb{C} homeomorphically onto itself and fixes the points 0, 1 and ∞ . He also showed that $f \in W^{1,p}_{loc}$ for all p < 2, and that $f^{-1} \in W^{1,2}_{loc}$. Tukia [Tu], who extended David's theorem, considered a domain D in $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ and replaced (1.3) by the spherical exponential condition

(1.4)
$$\sigma\{z \in \mathbb{C}: K_{\mu}(z) > t\} < Ce^{-\alpha t}$$

for all t > T, for some C > 0 and $\alpha > 0$. Here σ denotes the spherical area.

By John-Nirenberg's lemma on BMO functions, (1.3) says that $K_{\mu} \in BMO(\mathbb{C})$ and (1.4) says that K_{μ} is BMO in $D, D \subset \overline{\mathbb{C}}$ with respect to the spherical area in $\overline{\mathbb{C}}$.

In [RSY₂] we reformulated the theorems of David and Tukia, and showed that if $K_{\mu}(z) \leq Q(z)$ a.e. in D for some $Q \in BMO_{loc}(D)$ then (1.1) has a homeomorphic solution f in D.

For properties of mappings with dilatation majorized by a BMO function we refer to [Da], [Tu], the monograph [IM], the expositions [SY] and [And] and the papers [AIKM], [AS], [IKM], [RSY₂] and [Sa].

The main goal in this paper (see Section 4 below) is to show that existence holds if the condition $Q \in BMO_{loc}(D)$ is replaced by the weaker condition that Q is of **finite mean oscillation** in $D,Q \in FMO(D)$. The class of FMO functions which was introduced by Ignat'ev and Ryazanov [IR₂] (see Section 2 below for the definition) contains BMO_{loc} as a proper subclass in the strong sense that while $BMO_{loc} \subset L^p_{loc}$ for all $p < \infty$, FMO contains functions which do not belong to any $L^p_{loc}, p > 1$.

As in [RSY₁] and as in Brakalova and Jenkins [BJ] who extended David's theorem, our proof of existence is based on approximation and extremal length methods, where the latter is mainly used for equicontinuity; see Section 3 below.

From the well-known factorization theorem of Iwaniec and Švérak, Theorem 1 in [IS], one obtains that if $f: D \to \mathbb{C}$ is a homeomorphism, $f \in W^{1,2}_{loc}(D), J(z, f) \ge 0$ a.e. and $K_f \in L^1_{loc}(D)$, then $f^{-1} \in W^{1,2}_{loc}(D)$. However, as in several other existence theorems, the homeomorphic solution f which is constructed here need not belong to $W^{1,2}_{loc}$. Nevertheless, $f^{-1} \in W^{1,2}_{loc}$, which in turn implies that f generates all $W^{1,2}_{loc}$ solutions by means of compositions with holomorphic mappings; see Section 5.

2. Finite mean oscillation

Let D be a domain in the complex plane \mathbb{C} . We say that a function $\varphi \colon D \to \mathbb{R}$ has **finite mean oscillation** at a point $z_0 \in D$ if

(2.1)
$$d_{\varphi}(z_0) = \overline{\lim}_{\varepsilon \to 0} \int_{D(z_0, \varepsilon)} |\varphi(z) - \overline{\varphi}_{\varepsilon}(z_0)| dx dy < \infty,$$

where

(2.2)
$$\overline{\varphi}_{\varepsilon}(z_0) = \int_{D(z_0,\varepsilon)} \varphi(z) dx dy$$

is the mean value of the function $\varphi(z)$ over the disk $D(z_0, \varepsilon)$. Condition (2.1) includes the assumption that φ is integrable in some neighborhood of the point z_0 . We call $d_{\varphi}(z_0)$ the **dispersion** of the function φ at the point z_0 . We say that a function φ : $D \to \mathbb{R}$ is of **finite mean oscillation in** D, abbr. $\varphi \in FMO(D)$ or simply $\varphi \in FMO$, if φ has a finite dispersion at every point $z \in D$.

2.3. Remark: Note that, if a function $\varphi: D \to \mathbb{R}$ is integrable over $D(z_0, \varepsilon_0) \subset D$, then

(2.4)
$$\int_{D(z_0,\varepsilon)} |\varphi(z) - \overline{\varphi}_{\varepsilon}(z_0)| dx dy \le 2 \cdot \overline{\varphi}_{\varepsilon}(z_0)$$

and the left-hand side in (2.4) is continuous in the parameter $\varepsilon \in (0, \varepsilon_0]$ by the absolute continuity of the indefinite integral. Thus, for every $\delta_0 \in (0, \varepsilon_0)$,

(2.5)
$$\sup_{\varepsilon \in [\delta_0, \varepsilon_0]} \int_{D(z_0, \varepsilon)} |\varphi(z) - \overline{\varphi}_{\varepsilon}(z_0)| dx dy < \infty.$$

If (2.1) holds, then

(2.6)
$$\sup_{\varepsilon \in (0,\varepsilon_0]} \int_{D(z_0,\varepsilon)} |\varphi(z) - \overline{\varphi}_{\varepsilon}(z_0)| dx dy < \infty.$$

The value of the left-hand side of (2.6) is called the **maximal dispersion** of the function φ in the disk $D(z_0, \varepsilon_0)$.

2.7. Proposition: If, for some collection of numbers $\varphi_{\varepsilon} \in \mathbb{R}, \varepsilon \in (0, \varepsilon_0]$,

(2.8)
$$\overline{\lim}_{\varepsilon \to 0} \oint_{D(z_0,\varepsilon)} |\varphi(z) - \varphi_{\varepsilon}| dx dy < \infty,$$

then φ is of finite mean oscillation at z_0 .

Proof: Indeed, by the triangle inequality,

$$\begin{split} \int_{D(z_0,\varepsilon)} |\varphi(z) - \overline{\varphi}_{\varepsilon}(z_0)| dx dy &\leq \int_{D(z_0,\varepsilon)} |\varphi(z) - \varphi_{\varepsilon}| dx dy + |\varphi_{\varepsilon} - \overline{\varphi}_{\varepsilon}(z_0)| \\ &\leq 2 \cdot \int_{D(z_0,\varepsilon)} |\varphi(z) - \varphi_{\varepsilon}| dx dy. \end{split}$$

2.9. COROLLARY: If, for a point $z_0 \in D$,

$$(2.10) \overline{\lim}_{\varepsilon \to 0} \int_{D(z_0, \varepsilon)} |\varphi(z)| dx dy < \infty,$$

then φ has finite mean oscillation at z_0 .

2.11. Remark: Clearly BMO \subset FMO. The example given in Section 6 shows that the inclusion is proper. Note that the function $\varphi(z) = \log(1/|z|)$ belongs to BMO in the unit disk Δ (see, e.g., [RR], p. 5) and hence also to FMO. However,

251

 $\overline{\varphi}_{\varepsilon}(0) \to \infty$ as $\varepsilon \to 0$, showing that the condition (2.8) is only sufficient but not necessary for a function φ to be of finite mean oscillation at z_0 .

Recall that a point $z_0 \in D$ is a **Lebesgue point** of a function $\varphi \colon D \to \mathbb{R}$ if φ is integrable in a neighborhood of z_0 and

(2.12)
$$\lim_{\varepsilon \to 0} \int_{D(z_0, \varepsilon)} |\varphi(z) - \varphi(z_0)| dx dy = 0.$$

It is known that, for every function $\varphi \in L^1(D)$, almost every point in D is a Lebesgue point. We thus have the following corollary.

2.13. COROLLARY: Every function $\varphi: D \to \mathbb{R}$, which is locally integrable, has a finite mean oscillation at almost every point in D.

Below we use the following notation:

(2.14)
$$A(\varepsilon, \varepsilon_0) = \{ z \in \mathbb{C} : \varepsilon < |z| < \varepsilon_0 \}.$$

2.15. LEMMA: Let $\varphi: D \to \mathbb{R}$ be a nonnegative function with finite mean oscillation at $0 \in D$ and integrable in $D(e^{-1}) \subset D$. Then, for $\varepsilon \in (0, e^{-\epsilon})$,

(2.16)
$$\int_{A(\varepsilon,e^{-1})} \frac{\varphi(z)dxdy}{(|z|\log\frac{1}{|z|})^2} \le C \cdot \log\log\frac{1}{\varepsilon}$$

where

(2.17)
$$C = 2\pi (2\varphi_0 + 3e^2 d_0),$$

 φ_0 is the mean value of φ over the disk $D(e^{-1})$ and d_0 is the maximal dispersion of φ in the disk $D(e^{-1})$.

The lemma plays a central role in the proof of equicontinuity. Versions of this lemma were first established for BMO functions in $[RSY_2]$ and then for FMO functions in $[IR_1]$. An n-dimensional version of the lemma for BMO functions was established in [MRSY]. The proof here is similar to the one in $[RSY_1]$ and is presented for the sake of completeness.

Proof: Let $0 < \varepsilon < e^{-e}$, $\varepsilon_k = e^{-k}$, $A_k = \{z \in \mathbb{C}^n : \varepsilon_{k+1} \leq |z| < \varepsilon_k\}$, $D_k = D(\varepsilon_k)$ and let φ_k be the mean value of $\varphi(z)$ over $D_k, k = 1, 2 \dots$ Take a natural number N such that $\varepsilon \in [\varepsilon_{N+1}, \varepsilon_N)$. Then $A(\varepsilon, e^{-1}) \subset A(\varepsilon) = \bigcup_{k=1}^N A_k$ and

$$\eta(\varepsilon) = \int_{A(\varepsilon)} \varphi(z)\alpha(|z|)dxdy \le |S_1| + S_2,$$

where

$$\alpha(t) = (t \log 1/t)^{-2},$$

$$S_1(\varepsilon) = \sum_{k=1}^N \int_{A_k} (\varphi(z) - \varphi_k) \alpha(|z|) dx dy$$

and

$$S_2(\varepsilon) = \sum_{k=1}^N \varphi_k \int_{A_k} \alpha(|z|) dx dy.$$

Since $A_k \subset D_k$, $|z|^{-2} \le \pi e^2/|D_k|$ for $z \in A_k$ and $\log(1/|z|) > k$ in A_k , then

$$|S_1| \le \pi e^2 d_0 \sum_{k=1}^N \frac{1}{k^2} < 2\pi e^2 d_0$$

because

$$\sum_{k=2}^{\infty} \frac{1}{k^2} < \int_{1}^{\infty} \frac{dt}{t^2} = 1.$$

Now,

$$\int_{A_k} \alpha(|z|) dx dy \leq \frac{1}{k^2} \int_{A_k} \frac{dx dy}{|z|^2} = \frac{2\pi}{k^2}.$$

Moreover,

$$\begin{split} |\varphi_k - \varphi_{k-1}| &= \frac{1}{|D_k|} \left| \int_{D_k} (\varphi(z) - \varphi_{k-1}) dx dy \right| \\ &\leq \frac{e^2}{|D_{k-1}|} \int_{D_{k-1}} |\varphi(z) - \varphi_{k-1}| dx dy \leq e^2 d_0 \end{split}$$

and, by the triangle inequality, for $k \geq 2$,

$$\varphi_k = |\varphi_k| \le \varphi_1 + \sum_{l=2}^k |\varphi_l - \varphi_{l-1}| \le \varphi_1 + ke^2 d_0 = \varphi_0 + ke^2 d_0.$$

Hence

$$|S_2| = |S_2| \le 2\pi \sum_{k=1}^N \frac{\varphi_k}{k^2} \le 4\pi \varphi_0 + 2\pi e^2 d_0 \sum_{k=1}^N \frac{1}{k}.$$

But

$$\sum_{k=0}^{N} \frac{1}{k} < \int_{1}^{N} \frac{dt}{t} = \log N$$

and, for $\varepsilon < \varepsilon_N$,

$$N = \log \frac{1}{\varepsilon_N} < \log \frac{1}{\varepsilon}.$$

Consequently,

$$\sum_{k=1}^{N} \frac{1}{k} < 1 + \log \log \frac{1}{\varepsilon},$$

and thus for $\varepsilon \in (0, e^{-e})$,

$$\eta(\varepsilon) \leq 2\pi \left(e^2 d_0 + 2 \cdot \frac{e^2 d_0 + \varphi_0}{\log \log \frac{1}{\varepsilon}}\right) \cdot \log \log \frac{1}{\varepsilon} \leq C \cdot \log \log \frac{1}{\varepsilon},$$

which completes the proof.

2.18. Remark: The concept of finite mean oscillation can be extended to infinity in the standard way. Namely, given a domain D in the extended complex plane $\overline{\mathbb{C}}$, $\infty \in D$, and a function $\varphi \colon D \to \mathbb{R}$, we say that φ has finite mean oscillation at ∞ if the function $\varphi^*(z) = \varphi(1/\overline{z})$ has finite mean oscillation at 0. Clearly, by the change of variables $z \mapsto 1/\overline{z}$, the latter is equivalent to the condition

(2.19)
$$\int_{|z|>R} |\varphi(z) - \overline{\varphi}_R| \frac{dxdy}{|z|^4} = O\left(\frac{1}{R^2}\right),$$

where

(2.20)
$$\overline{\varphi}_R = \int_{|z| > R} \varphi(z) \frac{dxdy}{|z|^4}.$$

3. Estimate of distortion

For points $a,b \in \mathbb{C}$ and a set $E \subset \overline{\mathbb{C}}$ the **chordal distance** and **chordal diameter** will be denoted by s(a,b) and $\delta(E)$, respectively. Given a domain $D \subset \mathbb{C}$, a measurable function $Q: D \to [1,\infty]$ and a number $\Delta > 0$, let \mathfrak{F}_Q^{Δ} denote the class of all qc, i.e. quasiconformal, mappings $f: D \to \overline{\mathbb{C}}$ such that

$$(3.1) \delta(\overline{\mathbb{C}} \setminus f(D)) \ge \Delta$$

and such that

(3.2)
$$K_f(z) \leq Q(z)$$
 a.e. in D .

This means, in particular, that f is sense-preserving ACL homeomorphisms, and in addition to (3.2), $K_f \in L^{\infty}(D)$.

The main tool in establishing distortion estimates for mappings in \mathfrak{F}_Q^{Δ} are modulus inequalities for path families Γ in \mathbb{C} . Recall that the **modulus** of a path family Γ is defined by

(3.3)
$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\Gamma} \rho^{2}(z) dx dy,$$

where $\rho: \overline{\mathbb{C}} \to [0,\infty]$ is admissible, $\rho \in \operatorname{adm} \Gamma$, if ρ is a Borel function and

for every $\gamma \in \Gamma$.

The modulus $M(\Gamma)$ is invariant under conformal mappings and quasi-invariant under qc mappings. Namely, if $f: D \to \mathbb{C}$ is qc with $K_f(z) \leq K < \infty$ a.e., then

$$M(f\Gamma) \le KM(\Gamma)$$

for every path family Γ in D. This inequality can be refined as follows. If $f: D \to \overline{\mathbb{C}}$ is qc and, in addition, satisfies (3.2) for a given L^1_{loc} function $Q: D \to [1, \infty]$, then

(3.5)
$$M(f\Gamma) \le \int_D \int Q(z) \cdot \rho^2(z) dx dy$$

holds for every path family Γ in $\overline{\mathbb{C}}$ and every $\rho \in \operatorname{adm} \Gamma$; see [LV], p. 221.

Given a domain D and two sets E and F in $\overline{\mathbb{C}}$, let $\Gamma(E, F, D)$ denote the family of all paths $\gamma \colon [a, b] \to \overline{\mathbb{C}}$ which join E and F in D, i.e., $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for a < t < b. If $D = \overline{\mathbb{C}}$, we set $\Gamma(E, F) = \Gamma(E, F, \overline{\mathbb{C}})$.

Given a ring $R = R(C_1, C_2)$, i.e. a doubly connected domain R in $\overline{\mathbb{C}}$ with C_1 and C_2 being the connected components of $\overline{\mathbb{C}} \setminus R$, the **capacity** of R can be defined by

(3.6)
$$\operatorname{cap} R(C_1, C_2) = M(\Gamma(C_1, C_2, R));$$

see, e.g., [Ge] and [Zi]. Note that $M(\Gamma(C_1, C_2, R)) = M(\Gamma(C_1, C_2))$. For t > 1, the **Teichmüller ring** $R_T(t)$ is defined by

(3.7)
$$R_T(t) = \overline{\mathbb{C}} \setminus ([-1,0] \cup [t,\infty]).$$

By a well-known lemma of Gehring (see, e.g., 7.37 in [Vu] or [Ge]),

(3.8)
$$\operatorname{cap} R(C_1, C_2) \ge \operatorname{cap} R_T \left(\frac{1}{\delta(C_1)\delta(C_2)} \right)$$

where δ is the spherical diameter. It is also known (see, e.g., (7.19) and (7.22) in [Vu]) that

(3.9)
$$\operatorname{cap} R_T(t) = \frac{2\pi}{\log \Phi(t)},$$

where the function Φ has the following simple estimate:

$$(3.10) t+1 \le \Phi(t) \le 16 \cdot (t+1), \quad t > 1.$$

Hence by (3.6)–(3.10),

(3.11)
$$M(\Gamma(E, F)) \ge \frac{2\pi}{\log \frac{32}{\delta(E)\delta(F)}}$$

for every continua E and F in $\overline{\mathbb{C}}$.

3.12. LEMMA: Let D be a domain in $\mathbb C$ with $\overline{D(1/e)} \subset D$ and $f: D \to \mathbb C$ a qc mapping. If $f \in f \in \mathfrak{F}_Q^{\Delta}$ for some $\Delta > 0$ and some function $Q: D(1/e) \to [1, \infty]$ which is integrable in D(1/e) and which is of finite mean oscillation at 0, then

$$(3.13) s(f(z), f(0)) \le \alpha_0 \cdot \left(\log \frac{1}{|z|}\right)^{-\beta_0}$$

for every point $z \in D(e^{-e})$, where

$$\alpha_0 = 32/\Delta,$$

(3.15)
$$\beta_0 = (2q_0 + 3e^2d_0)^{-1},$$

 q_0 is the mean value of Q(z) in D(1/e) and d_0 is the maximal dispersion of Q(z) in D(1/e).

Proof: Let Γ_{ε} denote the family of all paths joining the circles

$$S_{\varepsilon} = \{ z \in \mathbb{C} : |z| = \varepsilon \}$$
 and $S_0 = \{ z \in \mathbb{C} : |z| = e^{-1} \}$

in the ring $A_{\varepsilon} = \{z \in \mathbb{C}: \varepsilon < |z| < e^{-1}\}$. Then the function

(3.16)
$$\rho_{\varepsilon}(z) = \begin{cases} a_{\varepsilon}/|z| \log(1/|z|), & \text{if } z \in A_{\varepsilon}, \\ 0, & \text{if } z \in \mathbb{C} \backslash A_{\varepsilon}, \end{cases}$$

where

(3.17)
$$a_{\varepsilon} = \left(\log\log\frac{1}{\varepsilon}\right)^{-1},$$

is admissible for Γ_{ε} , and hence by (3.5),

(3.18)
$$M(f\Gamma_{\varepsilon}) \leq \int_{D} Q(z) \cdot \rho_{\varepsilon}^{2}(|z|) dx dy.$$

Now $Q \in \text{FMO}$ at 0, and thus by Lemma 2.15, (3.16) and (3.17),

(3.19)
$$\int_{D} Q(z) \cdot \rho_{\varepsilon}^{2}(|z|) dx dy \leq C \cdot a_{\varepsilon}$$

and hence

(3.20)
$$M(f\Gamma_{\varepsilon}) \le \frac{C}{\log\log(1/\varepsilon)},$$

where the constant C is as in Lemma 2.15.

Note that $\overline{\mathbb{C}}\backslash fA_{\varepsilon}$ has exactly two components, because f is a homeomorphism and A_{ε} is a doubly connected domain. Denote by Γ_{ε}^* the family of all paths in $\overline{\mathbb{C}}$ joining the sets fS_{ε} and fS_0 . Then

(3.21)
$$M(\Gamma_{\varepsilon}^*) = M(f\Gamma_{\varepsilon}).$$

Indeed, on one hand $f\Gamma_{\varepsilon} \subset \Gamma_{\varepsilon}^*$ and hence $M(f\Gamma_{\varepsilon}) \leq M(\Gamma_{\varepsilon}^*)$, and on the other hand $f\Gamma_{\varepsilon} < \Gamma_{\varepsilon}^*$, i.e. every path in Γ_{ε}^* contains a subpath which belongs to $f\Gamma_{\varepsilon}$, and hence $M(f\Gamma_{\varepsilon}) \geq M(\Gamma_{\varepsilon}^*)$; see, e.g., Theorem 1(c) in [Fu]. Finally, by choosing $\varepsilon = |z|$ and invoking (3.11), we obtain (3.13).

3.22. COROLLARY: Let D be a domain in \mathbb{C} , $D(z_0, r_0)$ a disk in $D, f: D \to \mathbb{C}$ a qc mapping which belongs to \mathfrak{F}_Q^{Δ} for some $\Delta > 0$ and some function $Q: D(z_0, r_0) \to [1, \infty]$ which is integrable in $D(z_0, r_0)$. If Q(z) is of finite mean oscillation at z_0 , then

$$(3.23) s(f(z), f(z_0)) \le \alpha_0 \cdot \left(\log \frac{er_0}{|z - z_0|}\right)^{-\beta_0}$$

for every $z \in D(z_0, e^{1-e}r_0)$, where α_0 and β_0 are as in (3.14) and (3.15), q_0 is the mean value of the function Q(z) over the disk $D(z_0, r_0)$ and d_0 is the maximal dispersion of Q(z) in $D(z_0, r_0)$.

Indeed, the mean value and the dispersion of a function over disks are invariant under linear transformations of the independent variable, thus (3.23) follows from Lemma 3.12 by applying the transformation $z \mapsto (z - z_0)/er_0$.

4. Existence theorems

Based on the distortion estimates of Section 3, we obtain by a standard approximation process the following existence theorem.

4.1. THEOREM: Let D be a domain in $\mathbb C$ and $\mu: D \to \mathbb C$ a measurable function with $|\mu(z)| < 1$ a.e. If

(4.2)
$$K_{\mu}(z) \leq Q(z)$$
 a.e. in D

for some FMO function $Q: D \to [1, \infty]$, then the Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution $f_{\mu}: D \to \mathbb{C}$ with $f_{\mu}^{-1} \in W_{loc}^{1,2}$.

Proof: Fix points z_1 and z_2 in D. For $n \in \mathbb{N}$, define μ_n : $D \to \mathbb{C}$ by letting $\mu_n(z) = \mu(z)$ if $|\mu(z)| \leq 1 - 1/n$ and 0 otherwise. Then $||\mu_n||_{\infty} < 1$, and thus, by the classical existence theorem, the Beltrami equation (1.1) with μ_n instead of μ has a homeomorphic ACL solution f_n : $D \to \mathbb{C}$ which fixes z_1 and z_2 ; see, e.g., [Ah] and [LV]. By Corollary 3.22 the sequence f_n is equicontinuous, and hence by the Arzela-Ascoli theorem (see, e.g., [Du], p. 267, and [DS], p. 382) it has a subsequence, denoted again by f_n , which converges locally uniformly to some nonconstant mapping f in D. Then f is Q(z)-qc and satisfies (1.1) a.e.; see Theorem 3.1 and Corollary 5.12 in [RSY₁] on the convergence of Q(z)-qc mappings. It follows, in particular, that f is an ACL homeomorphic solution of (1.1). Since $Q \in FMO$, $Q \in L^1_{loc}$, and hence $K_{\mu} \in L^1_{loc}$. Therefore, by a standard arguments f is a $W^{1,1}_{loc}$ solution.

Next, note that the local convergence $f_n \to f$ is equivalent to its continuous convergence, i.e., $f_n(z_n) \to f(z_0)$ if $z_n \to z_0$; see [Du], p. 268. Since f is injective, it follows that $g_n = f_n^{-1} \to f^{-1} = g$ continuously, and hence locally uniformly. By direct computation we obtain that for large n,

$$(4.3) \qquad \int_{B} |\partial g_n|^2 du dv = \int_{g_n(B)} \frac{dx dy}{1 - |\mu_n(z)|^2} \le \int_{B^{\bullet}} Q(z) dx dy < \infty,$$

where B^* and B are relatively compact domains in D and in f(D), respectively, such that $g(\bar{B}) \subset B^*$. The change of variables is allowed since g_n and f_n are quand hence in $W_{loc}^{1,2}$. The relation (4.3) implies that the sequence g_n is bounded in $W^{1,2}(B)$, and hence $f^{-1} \in W_{loc}^{1,2}(f(D))$; see, e.g., [Re], p. 319.

4.4. COROLLARY: f_{μ}^{-1} is locally absolutely continuous and preserves nulls sets, and f_{μ} is regular, i.e., differentiable with $J_{f_{\mu}}(z) > 0$ a.e.

Indeed, the assertion about f_{μ}^{-1} follows from the fact that $f_{\mu}^{-1} \in W_{loc}^{1,2}$; see [LV], pp. 131 and 150. As an ACL mapping, f_{μ} has a.e. partial derivatives and hence by [GL] it has a total differential a.e. Let E denote the set of points of D where f_{μ} is differentiable and $J_{f_{\mu}}(z) = 0$, and suppose that |E| > 0. Then $|f_{\mu}(E)| > 0$, since $E = f_{\mu}^{-1}(f_{\mu}(E))$ and f_{μ}^{-1} preserves null sets. Clearly f_{μ}^{-1} is not differentiable at any point of $f_{\mu}(E)$, contradicting the fact that f_{μ}^{-1} is differentiable a.e.

- 4.5. COROLLARY: If $K_{\mu}(z) \leq Q(z)$ a.e. and every point $z \in D$ is a Lebesgue point for Q(z), then the Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution f_{μ} with $f_{\mu}^{-1} \in W_{loc}^{1,2}$.
- 4.6. COROLLARY: If, for every point $z_0 \in D$,

$$\overline{\lim}_{\varepsilon \to 0} \oint_{D(z_0,\varepsilon)} K_{\mu}(z) dx dy < \infty,$$

then the Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution f_{μ} with $J_{f_{\mu}}(z) > 0$ a.e.

- 4.8. Remark: (1) Note that if $f: \mathbb{C} \to \mathbb{C}$ is Q(z)-qc with $Q \in BMO$, then f is surjective and extends to a BMO-qc mapping of $\overline{\mathbb{C}}$ onto itself, because isolated singularities are removable for BMO functions; see, e.g., $[RSY_2]$. However, a Q(z)-qc mapping f need not be surjective if the condition $Q \in BMO$ is replaced by the weaker condition $Q \in FMO$, for instance, the dilatation of every diffeomorphism of \mathbb{C} onto the unit disk Δ is continuous and hence belongs to FMO yet $f: \mathbb{C} \to \mathbb{C}$ is not surjective. Note that f^{-1} is a diffeomorphism of Δ onto \mathbb{C} and its dilatation is also in FMO.
- (2) In view of Lemma 3.12, Theorem 4.1 extends to the case where $\infty \in D \subset \overline{\mathbb{C}}$ if the condition that Q(z) has finite mean oscillation at ∞ is added; see Remark 2.18. In this case there exists a homeomorphic $W_{loc}^{1,1}$ solution $f = f_{\mu}$ in D with $f(\infty) = \infty$ and $f_{\mu}^{-1} \in W_{loc}^{1,2}$. Here $f \in W_{loc}^{1,1}$ in D means that $f \in W_{loc}^{1,1}$ in $D \setminus \{\infty\}$ and that $f^*(z) = 1/\overline{f(1/\overline{z})}$ belongs to $W^{1,1}$ in a neighborhood of 0. The statement $f^{-1} \in W_{loc}^{1,2}$ has a similar meaning. Consequently, if the condition (4.7) holds at every point $z_0 \in D \setminus \{\infty\}$ and if

(4.9)
$$\int_{|z|>R} K_{\mu}(z) \frac{dxdy}{|z|^4} = O\left(\frac{1}{R^2}\right) \text{ as } R \to \infty,$$

then the Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution f_{μ} with $f_{\mu}^{-1} \in W_{loc}^{1,2}$.

- (3) In view of the dilatation estimate in Lemma 3.12 and Corollary 3.22, the condition (4.2) in Theorem 4.1 can be localized, yielding the following corollaries.
- 4.10. COROLLARY: Let D be a domain in \mathbb{C} and $\mu: D \to \mathbb{C}$ a measurable function with $|\mu(z)| < 1$ a.e. If for every point $z_0 \in D$, there exist a disk $D(z_0, r_0) \subset D$ and a function $Q_{z_0}: D(z_0, r_0) \to [1, \infty]$ which is of finite mean oscillation at z_0 such that $K_{\mu}(z) \leq Q_{z_0}(z)$ for a.e. $z \in D(z_0, r_0)$, then the

Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution $f_{\mu} \colon D \to \mathbb{C}$ with $f_{\mu}^{-1} \in W_{loc}^{1,2}$.

4.11. COROLLARY: Let μ : $\mathbb{C} \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. If

$$(4.12) K_{\mu}(z) = O\left(\log \frac{1}{|z - z_0|}\right) \quad \text{as } z \to z_0$$

for every point $z_0 \in \mathbb{C}$ and

$$(4.13) K_{\mu}(z) = O(\log|z|) \text{as } z \to \infty,$$

then the Beltrami equation (1.1) has a homeomorphic $W_{loc}^{1,1}$ solution $f_{\mu} \colon \mathbb{C} \to \mathbb{C}$ with $f(\mathbb{C}) = \mathbb{C}$ such that $f_{\mu}^{-1} \in W_{loc}^{1,2}$.

5. Representation, factorization and uniqueness theorems

In Section 4, we established the existence of a homeomorphic solution f_{μ} of the Beltrami equation (1.1) in a domain $D \subset \mathbb{C}$ in the case where $K_{\mu}(z) \leq Q(z)$ a.e. in D for some FMO function $Q: D \to [1, \infty]$. We now show that, for such a coefficient μ , the specific solution f_{μ} which is constructed in Theorem 4.1 generates all $W_{loc}^{1,2}$ solutions by composition with analytic functions. The proof uses merely the fact that $K_{\mu} \in L_{loc}^1$ and $f_{\mu}^{-1} \in W_{loc}^{1,2}$ and the main argument is as in Brakalova and Jenkins [BJ], p. 86. It should be noted that by a recent result of Hencl and Koskela [HK], $f^{-1} \in W_{loc}^{1,2}$ holds for any $W_{loc}^{1,1}$ -homeomorphism with $K_f \in L_{loc}^1$.

5.1. Theorem: Let D be a domain in $\mathbb C$ and $\mu\colon D\to\mathbb C$ a measurable function with $|\mu(z)|<1$ a.e. and

(5.2)
$$K_{\mu}(z) \leq Q(z) \quad \text{a.e. in } D,$$

for some FMO function $Q: D \to [1, \infty]$. Then every $W^{1,2}_{loc}$ solution g of the Beltrami equation has the representation

$$(5.3) g = h \circ f_{\mu},$$

where f_{μ} is the solution given in Theorem 4.1 and h is holomorphic in $f_{\mu}(D)$.

Proof: Let $\varphi = f_{\mu}^{-1}$ and $h = g \circ \varphi$. Since $g \in W_{loc}^{1,2}$ and $\varphi \in W_{loc}^{1,2}$, it follows that $h \in W_{loc}^{1,1}(f(D))$; see [LV], p. 151. Thus, by Weyl's lemma (see, e.g., [Ah],

p. 33) it suffices to show that $\overline{\partial}h = 0$ a.e. in $f_{\mu}(D)$. Let E denote the set of points z in D where either f_{μ} or g do not satisfy (1.1) or $J_{f_{\mu}} = 0$. A direct computation (cf. [Ah], p. 9) shows that $\overline{\partial}h = 0$ in $f_{\mu}(D) \setminus f_{\mu}(E)$. Moreover, $\varphi \in W^{1,2}_{loc}$ admits the change of variables (see, e.g., [LV], pp. 121, 128–130 and 150)

$$\int_{f_{\mu}(E)}\int |\partial\varphi|^2dudv=\int_{f_{\mu}(E)}\int J_{\varphi}(w)\frac{dudv}{1-|\mu(\varphi(w))|^2}=\int_E\int \frac{dxdy}{1-|\mu(z)|^2}=0,$$

which implies that $|\partial \varphi| = 0$ a.e. in $f_{\mu}(E)$. Also, $|\overline{\partial} \varphi| \leq |\partial \varphi|$ a.e. and

$$\overline{\partial}h = \overline{\partial}\varphi \cdot \partial g \circ \varphi + \overline{\partial}\overline{\varphi} \cdot \overline{\partial}g \circ \varphi,$$

hence $|\overline{\partial}h| = 0$ a.e. in $f_{\mu}(E)$, and thus $\overline{\partial}h = 0$ a.e. in $f_{\mu}(D)$. Consequently, h is holomorphic in $f_{\mu}(D)$ and (5.3) holds.

5.4. COROLLARY: Let μ be as in Theorem 5.1. Then every nonconstant $W_{loc}^{1,2}$ solution g of (1.1) is open, discrete and regular a.e., i.e., g is differentiable and $J_q(z) \neq 0$ a.e.

Given $K_{\mu} \leq Q$ a.e., $Q \in FMO$, it is not clear whether an ACL homeomorphic solution of (1.1) is unique up to a composition with a conformal mapping, namely whether, for any two ACL homeomorphic solutions f_1 and f_2 of (1.1), $f_2 \circ f_1^{-1}$ is conformal. However, as a consequence of Theorem 5.1 we have an affirmative answer in the special case when f_1 and f_2 belong to $W_{loc}^{1,2}$ as stated in the following corollary. Another type of condition for the uniqueness of a homeomorphic ACL solution can be obtained by imposing certain restrictions on the "size" of the singular set of μ . This will be done in Theorem 5.17.

- 5.5. COROLLARY: Let $\mu: D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. in D and such that (5.2) holds for some FMO function $Q: D \to [1, \infty]$. If f_1 and f_2 are homeomorphic $W_{loc}^{1,2}$ solutions of (1.1) in D, then $f_2 \circ f_1^{-1}$ is conformal.
- 5.6. COROLLARY: Let $\mu: D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. in D. If

$$\overline{\lim}_{\varepsilon \to 0} \oint_{D(z_0, \varepsilon)} K_{\mu}(z) dx dy < \infty,$$

at every point $z_0 \in D$, then (1.1) has a homeomorphic solution f_{μ} and every $W_{loc}^{1,2}$ solution g has the representation (5.3).

5.8. COROLLARY: Let $\mu: D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. in D. If

(5.9)
$$K_{\mu}(z) = O\left(\log \frac{1}{|z - z_0|}\right)$$

as $z \to z_0$ at every point $z_0 \in D$, then (1.1) has a homeomorphic solution f_{μ} and every $W_{loc}^{1,2}$ solution g has the representation (5.3).

Iwaniec and Šverák (Theorem 1 in [IS]) showed that if $g: D \to \mathbb{C}$ belongs to $W_{loc}^{1,2}, J(z,g) \geq 0$ a.e. and $K_g \in L_{loc}^1$, then there exist a homeomorphism $f: D \to \mathbb{C}$ such that $f^{-1} \in W_{loc}^{1,2}$ and a holomorphic function $h: f(\mathbb{C}) \to \mathbb{C}$ such that $g = h \circ f$. A simple argument for this statement in the special case where $K_{\mu} \in L_{loc}^1$ is replaced by the more restrictive condition that $K_{\mu}(z) \leq Q(z)$ a.e. for some FMO function Q appears in the proof of Theorem 5.1. It should be noted that Iwaniec and Martin have constructed μ 's with $K_{\mu} \in L_{loc}^1$ and corresponding ACL solutions which belong to all $W_{loc}^{1,p}, p < 2$, which are not open and discrete, and thus are not generated by a homeomorphic solution in the sense of (5.3); see, e.g., [IM].

By Stoilow's factorization theorem, it is easy to obtain the following conclusion.

5.10. Proposition: Let $\mu:D\to\mathbb{C}$ be a measurable function with $|\mu(z)|<1$ a.e. such that

$$(5.11) K_{\mu}(z) \in L^1_{loc}.$$

Then every discrete and open ACL solution g of the Beltrami equation (1.1) has the representation $g = h \circ f$, where f is a homeomorphic $W^{1,1}_{loc}$ solution of (1.1) and h is a holomorphic function in f(D).

5.12. Remark: As a consequence of the proposition we obtain that if $K_{\mu} \in L^1_{loc}$, then either the Beltrami equation (1.1) has a homeomorphic $W^{1,1}_{loc}$ solution or has no discrete and open ACL solution.

We end this section with a uniqueness theorem involving a condition on the singular set S_{μ} of μ which is defined below.

Let (X,d) be a metric space and let $H = \{h_x(r)\}_{x \in X}$ be a family of positive functions h_x given on $(0, \rho_x)$, $\rho_x > 0$, such that $h_x(r) \to 0$ as $r \to 0$. Let

(5.13)
$$\Lambda_H^{\rho}(X) = \inf \Sigma h_{x_k}(r_k),$$

where the infimum is taken over all finite collections of $x_k \in X$ and $r_k \in (0, \rho)$ such that the balls

$$(5.14) B(x_k, r_k) = \{x \in X : d(x, x_k) < r_k\}$$

cover X. The limit

(5.15)
$$\Lambda_H(X) = \lim_{\rho \to 0} \Lambda_H^{\rho}(X)$$

exists and is called the **H-length** of X. In particular, if $h_x(r) = r$ for all $x \in X$ and r > 0, then $\Lambda_H(X)$ is length of X.

The singular set S_{μ} of μ : $D \to \mathbb{C}$ is defined by

$$(5.16) S_{\mu} = \{ z \in D : \lim_{\varepsilon \to 0} ||K_{\mu}||_{L^{\infty}(D(z,\varepsilon))} = \infty \}.$$

Obviously, the set S_{μ} is closed relatively to the domain D.

5.17. THEOREM: Let μ , Q and f_{μ} be as in Theorem 4.1. For z in the singular set S_{μ} of μ and $0 < r < \delta(z) = \operatorname{dist}(z, \partial D)$, let

(5.18)
$$h_z(r) = \left(\log \frac{\delta(z)}{r}\right)^{-\beta(z)},$$

where $\beta(z)=(2q(z)+3e^2d(z))^{-1}$, q(z) is the mean value of $Q(\zeta)$ over $D(z,e^{-1}\delta(z))$ and d(z) is the maximal dispersion of $Q(\zeta)$ in $D(z,e^{-1}\delta(z))$. Let $H=\{h_z(r)\}_{z\in S_\mu}$.

If S_{μ} is of H-length zero, then for every homeomorphic ACL solution f of the Beltrami equation (1.1) there is a conformal mapping h such that $f = h \circ f_{\mu}$.

Proof: If $\Lambda_H(S_\mu) = 0$, then $S'_\mu = f_\mu(S_\mu)$ is of length zero by Corollary 3.22 with $r_0 = e^{-1}\delta$. Consequently, S'_μ does not locally disconnect \mathbb{C} (see, e.g., [Vä]) and hence $G = D \setminus S_\mu$ is a domain. The homeomorphisms f and f_μ are locally quasiconformal in the domain G and hence $h = f \circ f_\mu^{-1}$ is conformal in the domain $f_\mu(D) \setminus S'_\mu$. Since S'_μ is of length zero, it is removable for h, i.e., h can be extended to a conformal mapping in $f_\mu(D)$ by the Painlevé theorem; see, e.g., [Be].

5.19. Remark: In view of Remark 2.3, if

$$\overline{Q}(z_0) = \overline{\lim}_{\varepsilon \to 0} \int_{D(z_0,\varepsilon)} |Q(z)| dx dy < \infty,$$

for every point $z_0 \in D$, then one may take $\beta(z) = \gamma/\overline{Q}(z)$ in (5.18) for any $\gamma < 1/(2+6e^2)$.

6. Examples

We conclude this paper by constructing a function $\varphi \colon \mathbb{C} \to \mathbb{R}$ which belongs to FMO but not to L^p_{loc} for any p > 1, and hence not to BMO_{loc}. In the following examples, $p = 1 + \delta$ with an arbitrarily small $\delta > 0$. Let

(6.1)
$$\varphi(z) = \begin{cases} e^{1/(|z|^2 - 1)}, & \text{if } |z| < 1, \\ 0, & \text{if } |z| \ge 1. \end{cases}$$

Then φ belongs to C_0^{∞} and hence to BMO. Consider the function

(6.2)
$$\varphi_{\delta}^{*}(z) = \begin{cases} \varphi_{k}(z), & \text{if } z \in D_{k}, \\ 0, & \text{if } z \in \mathbb{C} \setminus \cup D_{k}, \end{cases}$$

where $D_k = D(z_k, r_k)$, $z_k = 2^{-k}$, $r_k = 2^{-(1+\delta)k^2}$, $\delta > 0$, and

(6.3)
$$\varphi_k(z) = 2^{2k^2} \varphi\left(\frac{z - z_k}{r_k}\right), \quad z \in D_k, \ k = 2, 3, \dots$$

Then φ_{δ}^* is smooth in $\mathbb{C} \setminus \{0\}$ and thus belongs to $BMO_{loc}(\mathbb{C} \setminus \{0\})$, and hence to $FMO(\mathbb{C} \setminus \{0\})$.

Now

(6.4)
$$\int_{D_k} \varphi_k(z) dx dy = 2^{-2\delta k^2} \int_{\mathbb{C}} \varphi(z) dx dy.$$

Hence

$$(6.5) \qquad \overline{\lim}_{\varepsilon \to 0} \oint_{D(\varepsilon)} \varphi_{\delta}^*(z) dx dy < \infty.$$

Thus, by Corollary 2.9, $\varphi \in \text{FMO}$.

Indeed, by setting

(6.6)
$$K = K(\varepsilon) = \left[\log_2 \frac{1}{\varepsilon}\right] \le \log_2 \frac{1}{\varepsilon},$$

where [A] denotes the integral part of the number A, we have

(6.7)
$$J = \int_{D(\varepsilon)} \varphi_{\delta}^{*}(z) dx dy \le I \cdot \sum_{k=K}^{\infty} 2^{-2\delta k^{2}} / \pi 2^{-2(K+1)},$$

where $I = \int_{\mathbb{C}} \varphi(z) dx dy$. If $\delta K > 1$, i.e. $K > 1/\delta$, then

(6.8)
$$\sum_{k=K}^{\infty} 2^{-2\delta k^2} \le \sum_{k=K}^{\infty} 2^{-2k} = 2^{-2K} \sum_{k=0}^{\infty} \left(\frac{1}{4}\right)^k = \frac{4}{3} \cdot 2^{-2K},$$

i.e., $J \leq 16I/3\pi$.

On the other hand,

$$\int_{D_k} \varphi_k^{1+\delta}(z) dx dy = \int_{\mathbb{C}} \varphi^{1+\delta}(z) dx dy,$$

and hence $\varphi_{\delta}^* \notin L^{1+\delta}(U)$ for any neighborhood U of 0.

ACKNOWLEDGEMENTS: The research of the first author was partially supported by grants from the University of Helsinki, from the Technion — Israel Institute of Technology and Holon Academic Institute of Technology and by grant 01.07/00241 of Scientific Fund of Fundamental Investigations of Ukraine; the research of the second author was partially supported by a grant from the Israel Science Foundation (grant 198/00) and by the Technion Fund for the Promotion of Research, and the third author was partially supported by a grant from the Israel Science Foundation (grant 198/00).

References

- [Ah] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966.
- [AIKM] K. Astala, T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-bounded distortion, Mathematische Annalen 317 (2000), 703-726.
- [And] C. Andrean Cazacu, Foundations of quasiconformal mappings, in Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier B. V., Amsterdam, 2005, pp. 687-755.
- [AS] C. Andrean Cazacu and V. Stanciu, Normal and compact families of BMO and BMO_{loc}-QC mappings, Mathematical Reports 2(52) (4) (2000), 409– 417.
- [Be] A. S. Besicovitch, On sufficient conditions for a function to be analytic, Proceedings of the London Mathematical Society 32 (1932), 1-9.
- [BJ] M. A. Brakalova and J. A. Jenkins, On solutions of the Beltrami equation, Journal d'Analyse Mathématique 76 (1998), 67-92.
- [Da] G. David, Solutions de l'equation de Beltrami avec $\|\mu\|_{\infty} = 1$, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 13 (1988), 25-70.
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, London, 1957.
- [Du] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [Fu] B. Fuglede, Extremal length and functional completion, Acta Mathematica 98 (1957), 171-219.

- F. W. Gehring, Quasiconformal Mappings in Complex Analysis and its [Ge] Applications, Vol. 2, International Atomic Energy Agency, Vienna, 1976.
- F. W. Gehring and O. Lehto, On the total differentiability of functions of [GL]a complex variable, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 272 (1959), 1-9.
- [HK] S. Hencl and P. Koskela, Mappings of finite distortion: discreteness and openness for quasi-light mappings, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire **22** (2005), 331–342.
- [IKM] T. Iwaniec, P. Koskela and G. Martin, Mappings of BMO-distortion and Beltrami-type operators, Journal d'Analyse Mathématique 88 (2002), 337-381.
- [IM] T. Iwaniec and G. Martin, Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001.
- A. Ignat'ev and V. Ryazanov, To the theory of removable singularities of $[IR_1]$ space mappings, Proceedings of the Institute of Applied Mathematics and Mechanics of NAS of Ukraine 8 (2003), 25–38.
- $[IR_2]$ A. Ignat'ev and V. Ryazanov, Finite mean oscillation in the mapping theory, Reports of the Department of Mathematics, University of Helsinki, Preprint **332** (2002), 1–17.
- [IS] T. Iwaniec and V. Sverák, On mappings with integrable dilatation, Proceedings of the American Mathematical Society 118 (1993), 181–188.
- [LV] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.
- O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Q-homeomorphisms, [MRSY] Contemporary Mathematics 364 (2004), 193–203.
- [Re] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Mathematical Monographs 73, American Mathematical Society, Providence, RI, 1989.
- [RR] H. M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics 487, Springer-Verlag, Berlin-New York, 1975.
- $[RSY_1]$ V. Ryazanov, U. Srebro and E. Yakubov, Plane mappings with dilatation dominated by functions of bounded mean oscillation, Siberian Advances in Mathematics 11, no 2 (2001), 94-130.
- V. Ryazanov, U. Srebro and E. Yakubov, BMO-quasiconformal mappings, $[RSY_2]$ Journal d'Analyse Mathématique 83 (2001), 1-20.
- [Sa] S. Sastry, Boundary behaviour of BMO-qc automorphisms, Israel Journal of Mathematics **129** (2002), 373–380.

- [SY] U. Srebro and E. Yakubov, Beltrami equation, in Handbook in Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier B. V., Amsterdam, 2005, pp. 555-597.
- [Tu] P. Tukia, Compactness properties of μ-homeomorphisms, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 16 (1991), 47–69.
- [Vä] J. Väisälä, On the null-sets for extremal distances, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica **322** (1962), 1–12.
- [Vu] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics 1319, Springer-Verlag, Berlin, 1988.
- [Zi] W. P. Ziemer, Extremal length and p-capacity, Michigan Mathematical Journal 16 (1969), 43-51.